Lecture 2 Part 10 Integrals Class 12 Maths

Lecture 2 Part 10 Integrals Class 12 Maths

Logic for this lecture: 

Second way: in case of all linear variables in question, you can substitute bigger linear expression of question and find the value for smaller linear expression from that. You can also use this method in case of exponential functions. 
You can also use division if there is no root in function and it is an improper fraction.

Integrals Lecture 2 Part 10
Play Video

Questions Discussed in this lecture:

Q74. \int{\frac{x}{\sqrt{x+4}}dx=\frac{2}{3}\sqrt{x+4}(x-8)+C}

Q75. \int{\frac{2x-1}{2x+3}dx} = x-log{|}(2x+3)^2|+C

Q76. \int{\frac{8x+13}{\sqrt{4x+7}}dx} = \frac{1}{3}(4x+7)^\frac{3}{2}-\frac{1}{2}(4x+7)^\frac{1}{2}+C

Q77. \int{\frac{x}{\sqrt{x+2}}dx} = \frac{2}{3}(x+2)^\frac{3}{2}-4(x+1)^\frac{1}{2}+C

Q78. \int{\frac{x+1}{\sqrt{2x-1}}dx}=\frac{1}{6}(2x-1)^\frac{3}{2}+\frac{3}{2}(2x-1)^\frac{1}{2}+C