Continuity And Differentiability Class 12 Maths

A real valued function is continuous at a point in its domain if the limit of the function at that point equals the value of the function at that point. A function is continuous if it is continuous on the whole of its domain.

Sum, difference, product and quotient of continuous functions are continuous. i.e., if f and g are continuous functions, then
$(f ± g) (x) = f(x) ± g(x)$ is continuous.
$(f . g) (x) = f(x) . g (x)$ is continuous.
$\left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} ( {\rm wherever } g(x) \ne 0 )$ is continuous.

Every differentiable function is continuous, but the converse is not true.

Chain rule is rule to differentiate composites of functions.

Logarithmic differentiation is a powerful technique to differentiate functions of the form $f(x) = [u (x)]^{v (x)}$. Here both f(x) and u(x) need to be positive for this technique to make sense.

Lecture - 1

Topics Discussed in this lecture: How to check continuity and discontinuity in a graph of a function through limits. NCERT Exercise 5.1 (Q6 to Q25)

Lecture - 5

NCERT Exercise 5.2 (Q1 to Q8)
Explicit and Implicit functions
NCERT Exercise 5.3 (Q1 to Q15)
Derivative of inverse trigonometric functions
Example 26 and Example 27 Lecture - 9

What are parametric functions and how to find their derivatives
NCERT Exercise 5.6 (Q1 to Q11) 